Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli.

نویسندگان

  • Junjun Wu
  • Oliver Yu
  • Guocheng Du
  • Jingwen Zhou
  • Jian Chen
چکیده

Malonyl coenzyme A (malonyl-CoA) is an important precursor for the synthesis of natural products, such as polyketides and flavonoids. The majority of this cofactor often is consumed for producing fatty acids and phospholipids, leaving only a small amount of cellular malonyl-CoA available for producing the target compound. The tuning of malonyl-CoA into heterologous pathways yields significant phenotypic effects, such as growth retardation and even cell death. In this study, fine-tuning of the fatty acid pathway in Escherichia coli with antisense RNA (asRNA) to balance the demands on malonyl-CoA for target-product synthesis and cell health was proposed. To establish an efficient asRNA system, the relationship between sequence and function for asRNA was explored. It was demonstrated that the gene-silencing effect of asRNA could be tuned by directing asRNA to different positions in the 5'-UTR (untranslated region) of the target gene. Based on this principle, the activity of asRNA was quantitatively tailored to balance the need for malonyl-CoA in cell growth and the production of the main flavonoid precursor, (2S)-naringenin. Appropriate inhibitory efficiency of the anti-fabB/fabF asRNA improved the production titer by 431% (391 mg/liter). Therefore, the strategy presented in this study provided a useful tool for the fine-tuning of endogenous gene expression in bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

Modular Optimization of Heterologous Pathways for De Novo Synthesis of (2S)-Naringenin in Escherichia coli

Due to increasing concerns about food safety and environmental issues, bio-based production of flavonoids from safe, inexpensive, and renewable substrates is increasingly attracting attention. Here, the complete biosynthetic pathway, consisting of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS), chorismate mutase/prephenate dehydrogenase (CM/PDH), tyrosine ammonia lyase (TAL), 4-cou...

متن کامل

Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products.

Malonyl-CoA is the building block for fatty acid biosynthesis and also a precursor to various pharmaceutically and industrially valuable molecules, such as polyketides and biopolymers. However, intracellular malonyl-CoA is usually maintained at low levels, which poses great challenges to efficient microbial production of malonyl-CoA derived molecules. Inactivation of the malonyl-CoA consumption...

متن کامل

Optimization of a heterologous pathway for the production of flavonoids from glucose.

The development of efficient microbial processes for the production of flavonoids has been a metabolic engineering goal for the past several years, primarily due to the purported health-promoting effects of these compounds. Although significant strides have been made recently in improving strain titers and yields, current fermentation strategies suffer from two major drawbacks-(1) the requireme...

متن کامل

Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid

  Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 80 23  شماره 

صفحات  -

تاریخ انتشار 2014